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Abstract. The leptodermous approximation is applied to nuclear systems for T � 0. The introduction of surface
corrections leads to anomalous caloric curves and to negative heat capacities in the liquid-gas coexistence
region. Clusterization in the vapor is described by associating surface energy to clusters according to Fisher’s
formula. The three-dimensional Ising model, a leptodermous system par excellence, does obey rigorously
Fisher’s scaling up to the critical point. Multifragmentation data from several experiments including the ISiS
and EOS Collaborations, as well as compound nucleus fragment emission at much lower energy follow the same
scaling, thus providing the strongest evidence yet of liquid-vapor coexistence. The phase diagram is obtained for
the finite system and an extrapolation is made to infinite nuclear matter.

INTRODUCTION

Up to now, the nuclear liquid-vapor phase diagram has
been based more on educated guesses and artistic license
than on experimental fact. We have succeeded in remov-
ing this arbitrariness by characterizing the liquid-vapor
coexistence curve from low temperatures up to the criti-
cal point and in generalizing it to infinite nuclear matter.
What follows is an outline of the ideas that have led us to
this characterization.

Nuclei are leptodermous, mesoscopic clusters. Their
thin skin leads naturally to an expansion of their energy
in powers of A � 1 � 3 . The leading term, proportional to
the number of nucleons A, is the bulk term; the second,
proportional to A2 � 3 , is the surface term, the next, propor-
tional to A1 � 3 , is the curvature term, etc. This is the basis
of the liquid drop model, which by merely correcting the
bulk terms with a surface term, manages to reproduce the
binding energies of nuclei to within 1%. There is reason
to believe that a similar leptodermous treatment of nu-
clear systems at T � 0 should led to an equivalently good
reproduction of nuclear thermodynamical properties.

In particular, the appearance of a vapor phase at T � 0
opens two complementary perspectives for the character-
ization of phase coexistence: the liquid perspective and
the vapor perspective. From the liquid perspective, one
is led to consider the transition between a liquid-like nu-
clear droplet and its equilibrium vapor, with the atten-
dant caloric curve, as well as compound nuclear decay
in terms of enthalpy of vaporization. From the vapor
perspective one is led to consider the properties of the

vapor phase, especially the extent to which nucleons are
aggregated into clusters, as indicators of incipient liquid
condensation.

In the first part of this presentation we take the liq-
uid perspective and derive analytically the caloric curve
and the (negative) heat capacity for a drop undergoing
an isobaric phase transition. In the second part we take
the vapor perspective and show that the clusterization
in the three-dimensional Ising model can be accounted
for in terms of the leptodermous expansion. The rigor-
ous obeyance of the mass and temperature scaling law
(Fisher’s scaling) by the Ising model is exactly paralleled
by the nuclear systems in multifragmentation, thus pro-
viding the best evidence yet for liquid-vapor coexistence.
In particular we shall describe how to generalize the ex-
perimental thermodynamical results to the limiting case
of infinite nuclear matter. Finally, we revert to the liquid
perspective and show how compound nucleus fragment
emission can be reconciled with the liquid to vapor phase
transition.

THE ISOBARIC PHASE TRANSITION
OF A LIQUID DROP

The thermodynamical equilibrium properties of first or-
der phase transitions are completely describable in terms
of the thermodynamic state variables associated with the
individual separate phases. For this reason, in contrast
with continuous phase transitions, first order phase tran-



sitions are “trivial,” and interesting only in so far as they
herald the appearance of a hitherto unknown or unde-
scribed phase.

Renewed attention to phase transitions has been gen-
erated by studies of models with well defined Hamilto-
nians with either short range interactions (e.g. the Ising
model [1, 2, 3, 4, 5] or the lattice gas model [6]) or in-
corporating long range interactions such as gravitation or
electro-magnetic interactions. Features expected to dis-
appear in the thermodynamic limit, if such a limit exists,
were noticed and were claimed to be essential, charac-
teristic indicators of phase transitions in mesoscopic sys-
tems [7]. For instance, first order phase transitions were
associated with anomalous convex intruders in the en-
tropy versus energy curves, resulting in back-bendings
in the caloric curve, and in negative heat capacities [7].

These anomalies have been attributed to a variety of
causes, the foremost of which are surface effects, and
long range forces [7]. Unfortunately however, the nu-
merical nature of the calculations tends to make the iden-
tification of the causes of negative heat capacities rather
problematic.

In the context of nuclear physics, microcanonical
models of nuclear multifragmentation have associated
the anomalies of a convex intruder with the onset of mul-
tifragmentation [7]. Furthermore, lattice gas models in
the isobaric regime have also shown negative specific
heats in the coexistence region, where multifragmenta-
tion also appears [6]. The question of whether the two
transitions are related and possibly coincident with the
liquid-vapor transition is still very much open.

Recently, the claim has been made of an empirical ob-
servation of these anomalies, such as negative heat ca-
pacities in nuclear systems [8]. These negative heat ca-
pacities have been inferred from the study of fluctuations
in multifragmenting nuclear systems. It would be highly
desirable to ground any evidence for these anomalies,
theoretical or otherwise, on thermodynamics itself, min-
imally modified to allow for the possible role of surface
effects related to the finiteness of the system.

In this section we illustrate analytically how effects
such as negative heat capacities can arise within a stan-
dard thermodynamic treatment. We consider the evap-
oration of a drop of ordinary liquid. Our only concern
with mesoscopicity is the explicit treatment of the sur-
face of the drop.

No qualitative difference in the picture results by con-
sidering a drop of finite radius r. The only difference is
that the overall free energy of the drop as we shall see
below, is higher than that of the bulk and the equilibrium
vapor pressure is correspondingly higher.

The state of equilibrium between a liquid and its vapor
can be described in the simplest way by the Clapeyron

Equation
dp
dT

� ∆Hm

∆VmT
: (1)

here p and T are the pressure and temperature, ∆Hm is the
molar enthalpy of vaporization and ∆Vm is the difference
of the molar volumes of vapor V v

m and liquid, V l
m.

Specialization to the case of a drop of radius r can be
achieved by modifying the enthalpy to account for the
surface energy [9]

∆Hm
� ∆H0

m
� csSl

m
� ∆H0

m
� 3csV l

m

r
(2)

where ∆H0
m is the “bulk” molar enthalpy, Sl

m and V l
m are

the surface and volume of the drop and cs is the surface
energy coefficient.

Neglecting V l
m compared to V v

m and considering the
vapor ideal, i.e. V v

m
� T

�
p, we can integrate Eq. (1),

assuming also ∆Hm to be constant. We obtain

p � p0 exp

� � ∆H0
m

T � 3csV l
m

rT � (3)

or

p � pbulk exp

�
3csV l

m

rT ��� (4)

This equation contains all the thermodynamical informa-
tion necessary to characterize the phase coexistence of
the liquid drop of radius r with its vapor. The salient
feature is the rise of the vapor pressure with decreasing
radius. Fig. 1 gives a map of the function p � � p �
	 T ��� r �� ,
in terms of the scaled variables

p � � p
p0

� T � � T
∆H0

m
� r � � ∆H0

m

3csV l
m

r� (5)

For any given radius r, the function p � p 	 T � r  describes
the equilibrium condition between the drop and its vapor.
In other words, it is the phase diagram of the drop.

Let us now introduce some history and construct a
caloric curve for a drop of radius r0 at constant pressure
p0. As the drop is heated, and before the vapor can ap-
pear, the temperature increases according to ∆H � Cl

p∆T ,
withCl

p is the liquid’s heat capacity and is approximately
constant. When T reaches the value T0 at which the va-
por pressure p 	 r0  � p0 , the vapor first appears and it
expands against the container. The heat of vaporization
is absorbed at a rate Hm 	 r0  . However, as it evaporates,
the drop sees its radius decreasing from its initial value,
chosen to be r �0 � 5 � 35. At constant temperature the va-
por pressure would rise, but, at constant pressure, as we
are now operating, the temperature decreases as shown
in Fig. 1, as the system absorbs its heat of vaporization,
so that,

∆H � � r0

r
∆Hm

dV
V l

m

� 4π
V l

m

�
3csV l

m

∆H0
m � 3

(6)



T´

p´

T4´ T3´ T2´ T1´

T0´

r 4
´ 

=
 2

r 3
´ =

 3

r 2
´ =

 4

r 1
´ =

 5

r 0
´ =

 5
.3

5

0.08

0.09

0.1

0.11

0.12

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

H´

T
´

 r 0
´ =

 5
.3

5
 r 1

´ =
 5

 r 2
´ =

 4
 r 3

´ =
 3

 r 4
´ =

 2

r5´ = 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180

FIGURE 1. Left: Saturated vapor pressure as a function of the temperature for different droplet radii. The size of the open circles
is proportional to the droplet radius. Right: The history dependent caloric curve of an evaporating drop at constant pressure. Dashed
lines represent bulk behavior, solid line shows the drop’s caloric curve. The scaled enthalpy is H

���
H
�
∆H0

m � 3csV l
m � 3 � � 4π � Vl

m � .�
1
3
	 r � 30 � r � 3  � 1

2
	 r � 20 � r � 2 ��

and

T � � T �0 	
 1 � 1
r �

1 � 1
r �0

�
� (7)

After the drop has totally evaporated, the vapor can in-
crease its temperature according to ∆H � Cv

p∆T where
Cv

p is the vapor heat capacity at constant pressure. The
resulting caloric curve defined parametrically by Eq. (7)
and Eq. (7) and shown in Fig. 1 is rather interesting. It
has a decreasing branch associated with the phase transi-
tion, along which the heat capacity is negative!

As an aside we note that the scaled radius r � is just
the ratio of the bulk energy to the surface energy. Thus
for a nuclear system the range shown: 1 � r �0 � 5 � 35,
corresponds to a gold nucleus (A � 197) evaporating to a
single nucleon.

These rather extraordinary features are wholly due to
the interesting but, in a way, accidental history of the
decreasing radius with increasing evaporation.

Typically, experiments heat a preassigned system with
a certain amount of energy ∆E or ∆H , and determine
the resulting change in entropy S and temperature 1

�
T �

∂S
�
∂E �V ; from the resulting caloric curve, phase coexis-

tence diagrams are extracted. However, as shown above,
the evolution of the system occurring during heating in-
troduces complications in the construction of a phase di-
agram from such a caloric curve.

To avoid this problem an experimentalist or theorist
would have to keep the radius constant or correct for its
change while determining the vapor pressure as a func-
tion of the temperature, thereby eliminating the acciden-
tal aspects associated with the evolution of the system.

The results obtained here are firmly grounded on ther-
modynamics with a straightforward accounting of finite-
ness through the surface correction. They are exact in the
limit in which the liquid drop model holds, namely, down
to nuclei/clusters containing 20 or so constituents. They
are completely general, as they do not depend on specific
details of the system but rather on its gross properties. In
fact, they should be used as the paragon for lattice gas
models and the like. In the limit in which these models
represent liquid vapor coexistence, they must reproduce
the present results.

Even more importantly, this approach obviates the
need for repeating numerical calculations for each in-
dividual system or drop size. All that is required is to
determine the bulk energy (enthalpy) and the surface en-
ergy coefficient of a given phase once and for all.

It is worth repeating that, once the constraint of con-
stant pressure is enforced, the results described here are
entirely general, as they apply to any small system un-
dergoing solid-vapor or liquid vapor transitions.



THE THREE-DIMENSIONAL ISING
MODEL: A PARADIGM OF

LIQUID-VAPOR COEXISTENCE IN
NUCLEAR MULTIFRAGMENTATION

Two features associated with the fragment multiplicities
are found to be quite pervasive in all multifragmenta-
tion reactions. They have been named “reducibility" and
“thermal scaling” [9, 10, 11].

Reducibility is the property that the probability of
observing n-fragments of a given size is expressible in
terms of an elementary one-fragment probability. This
property can occur only if fragments are independent
of one another and it coincides with stochasticity. Both
binomial, and its limiting form, Poissonian reducibilities
have been extensively documented experimentally for
nuclear multifragmentation [9, 10, 11].

Thermal scaling is the linear dependence of the loga-
rithm of the one-fragment probability with 1

�
T (an Ar-

rhenius plot). It indicates that the emission probability
for fragment type i has a Boltzmann dependence

qi
� q0e � Bi � T (8)

where Bi is a “barrier” corresponding to the production
process.

The combination of these two empirical features pow-
erfully attests to a statistical mechanism of multifrag-
mentation in general, and to liquid-vapor coexistence
specifically [12].

Many statistical models have been proposed as an ex-
planation for multifragmentation. It is our intention to
identify a model which is as simple as possible, and yet
captures the essential features observed in the experi-
ments. The three-dimensional Ising model satisfies both
the criteria of simplicity in its Hamiltonian and lends it-
self to a thermal treatment with nontrivial results [21].

We will show that this model contains both the fea-
tures of reducibility and thermal scaling observed in nu-
clear multifragmentation. In showing the features of ther-
mal scaling we will demonstrate that for temperatures
below the critical temperature, the slopes of the Arrhe-
nius plots associated with the individual masses of the
fragments, or the “barriers”, portray a dependence on
the fragment mass (A) of the form B ∝ Aσ, where σ is
a critical exponent which relates the mass to the clus-
ter surface. In addition, the individual Arrhenius plots
for each fragment mass can be absorbed into a sin-
gle scaling function identical to that of Fisher’s droplet
model [13, 14, 15, 16, 17], which defines the liquid-vapor
coexistence line up to the critical temperature.

The Hamiltonian of the Ising model has two terms:
the interaction between nearest neighbor (n � n � ) spins in a
fixed lattice and the interaction between the fixed spins

and an external applied field Hext:

H � � J ∑
i � j ��� n � n � �

sis j
� Hext ∑

i

si (9)

where J is the strength of the spin-spin interaction. In the
absence of an external magnetic field, the system exhibits
a first-order phase transition for temperatures up to the
critical point at which it exhibits a continuous phase tran-
sition. The critical temperature for the three-dimensional
Ising model has not been determined analytically; how-
ever, Monte Carlo techniques have yielded a value of
Tc

� 4 � 513 J
�
kb [2].

In the present study, Monte Carlo techniques are used
to determine equilibrium cluster distributions in a canon-
ical ensemble as a function of temperature for a simple
cubic lattice. Since we are interested in studying liquid-
vapor coexistence, all calculations are performed at zero
external field (Hext

� 0). The lattice contains 503 spins,
and periodic boundary conditions are used to minimize
finite size effects. The Swendsen-Wang algorithm [4]
was used to determine the equilibrium spin configura-
tions of the lattice for given temperatures, and physical
clusters were identified using the Coniglio-Klein [1] pre-
scription.

We now proceed to analyze the Monte Carlo results
in the same way as has been done with nuclear multi-
fragmentation data [9, 10, 11]. We shall consider first
whether the multiplicity distributions for individual frag-
ments manifest Poissonian reducibility. Fig. 2 shows the
multiplicity distributions for a sample of fragment sizes
and temperatures. The solid lines represent Poisson dis-
tributions calculated from the corresponding mean mul-
tiplicities. The distributions are indeed remarkably close
to Poissonian not only for the cases shown, but for all
masses and all temperatures below, at and above Tc.
Therefore Poissonian reducibility is empirically verified.

This signifies that the probability of finding m clusters
of size A depends only on the probability of finding
one cluster of that size and is nearly independent of the
probability of finding clusters of any other size. This
feature is also observed in percolation models, Fisher’s
droplet model and nuclear fragmentation [12].

If the fragment distributions exhibit thermal scaling,
the distributions must be of the form given in Eq. (8).
Thus in an Arrhenius plot (a semi-log graph of the num-
ber of clusters of size A (nA) vs. 1

�
T ), the distributions

should be linear.
As shown in Fig. 2, this is indeed the case over a wide

range of temperatures (0 � T � Tc) and fragment sizes.
While we have shown distributions for clusters up to size
A � 100, the trend continues for larger clusters, but with
poorer statistics. This linearity extends over more than
four orders of magnitude. It rigorously confirms the form
of Eq. (8) and signifies the independent thermal forma-
tion of fragments controlled by a size-dependent “bar-



FIGURE 2. Left: The probability distributions for obtaining m fragments of size A at the three temperatures indicated. The solid
lines are Poisson distributions with means given by the Monte Carlo data. Right: Arrhenius plots of the cluster distributions. A
statistical error bar is shown when it exceeds the size of the data point. The lines are fits of the form given in Eq. (8). The critical
temperature is indicated by the dashed line.

rier”. This feature has been amply verified in nuclear
multifragmentation [9, 12, 17]. By fitting the linear re-
gions of the fragment distributionsbelow the critical tem-
perature, the “barriers” can be extracted. The “barriers”
for each cluster size are shown in Fig. 3.

These “barriers” find their origin in the number of
broken bonds associated with a cluster which should
be proportional to the surface area of the cluster itself.
Therefore they should be well described by a power-law:

B 	 A  � c0Aσ � (10)

with σ � 2
�
3. The fit of the extracted “barriers” is B �	 12 � 77

�
0 � 04  J A

�
0 � 723 � 0 � 008 � and is remarkably good

(see Fig. 3). The error bars are statistical. Estimates of
the errors associated with different analysis procedures
(described below) increase the errors in σ and c0

�
J to�

0 � 026 and
�

1 � 2 respectively.
The value for σ determined from the “barriers” is close

to 2/3, the value one would expect for spherical clusters
of closely packed spherical objects [3]. This picture leads
naturally to the interpretation of c0 as a surface energy
coefficient.

The features of reducibility and thermal scaling dis-
cussed above can be found united in Fisher’s formula for
the cluster abundance in a vapor as a function of cluster

size and temperature. The formula is

nA 	 T  � q0A � τ exp 	 A∆µ
T

 exp 	 c0Aσ

Tc
 exp 	 � c0Aσ

T

(11)

where q0 is a normalization constant, τ is a topological
critical exponent, ∆µ is the difference in chemical poten-
tial of the system and the liquid and c0 is the surface
energy coefficient at zero temperature. The formula is
valid for temperatures up to the critical point, at which
point the surface energy of a cluster (c0Aσ 	 1 � T

�
Tc  )

vanishes. It contains the thermal scaling up to Tc and the
dependence of the “barrier” on the cluster mass through
the critical exponent σ [13, 14, 15, 16]. One can see that
the cluster surface energy coefficient (c0) is also found
directly in Fisher’s droplet model. It is interesting to ex-
plore further the applicability of this formula to the Ising
model.

In addition to the linear behavior of the Arrhenius
plots below the critical temperature, the Fisher droplet
model also predicts that the cluster size distribution at
the critical point must follow a power law

nA 	 Tc  � q0A � τ � (12)

The best power law fit of the fragment abundances is
shown in the lower panel of Fig. 3. The critical tempera-
ture was found to be kbTc

�
J � 4 � 515

�
0 � 011 with a best



FIGURE 3. Left: The upper panel shows the extracted “barriers” from the fits to the cluster distributions. The line is a fit of the
form given in Eq. (10). The lower panel shows the power law behavior of the cluster distribution at kbT � J

�
4 � 515. The line is

a fit of the form given in Eq. (12). In both panels, error bars are smaller than the data point. Right: Scaling behavior of cluster
distributions.

fit of the form nA 	 Tc  � 	 30 � 000
�

5 � 000  A �
� 2 � 30 � 0 � 08 � .

This value of the critical temperature is consistent with
the value determined for infinite systems (4 � 513J

�
kB).

For the present calculations with Hext
� 0 and an un-

constrained magnetization, the system exists on the coex-
istence curve for T � Tc. Thus, the chemical potentials of
the liquid and gas phases are equal (∆µ � 0), and Eq. (11)
can be rewritten as:

nA 	 T  Aτ � q0
� exp 	 � c0Aσε

�
T  (13)

with ε � 	 Tc
� T  � Tc. Therefore, a graph of the scaled

cluster distributions (nA 	 T  Aτ � q0) as a function of
εAσ � T should collapse the distributions of all cluster
sizes onto a single curve. This scaling behavior can
clearly be seen in Fig. 3. This nearly perfect collapse
below the critical temperature extends over six orders
of magnitude for a broad range of cluster sizes and it is
very linear. Thus the clustering in the three-dimensional
Ising model can be described by Fisher’s droplet model.

The Ising clusters constructed here can be properly
thought of as “vapor” in equilibrium with the “liquid”
percolating cluster. Coexistence of the two phases is de-
termined by the observation that the empirical scaling
implies ∆µ � 0. The fact that both the three-dimensional
Ising model and the experimental nuclear multifragmen-
tation data obey the same scaling predicted by Fisher’s
droplet model indicates that nuclear multifragmentation
can indeed be identified as the clustering (non-ideality)
in a nuclear vapor in equilibrium with the nuclear liq-
uid [12, 17].

In conclusion, we have shown that the clusterization
in the Ising model, like nuclear multifragmentation, por-
trays reducibility and thermal scaling. In addition, the
Arrhenius plots allow for the extraction of “barriers”
which are found to have a dependence of B � c0Aσ,
where σ is a critical exponent. The “barrier” coefficient
from the Arrhenius plots is equivalent to the surface en-
ergy coefficient of the clusters in Fisher’s model. Thus
we have found a new method for determining both the
critical exponent σ and the surface energy of the 3-D
Ising model clusters directly from the cluster distribu-
tions. The reducibility and thermal scaling features in the
Ising model can be incorporated into a Fisher-like scal-
ing with ∆µ � 0, which is obeyed rigorously over the ex-
plored temperature range below the critical temperature.
Thus the observed clusters can be interpreted as a man-
ifestation of the non-ideality of a vapor in equilibrium
with a liquid. Finally, nuclear multifragmentation, which
is seen to share all the scaling observed here, should be
similarly interpreted as the clusterization of a nuclear va-
por in equilibrium with its liquid.
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FIGURE 4. Left: (a) The ISiS fragment yield surface: natural log of the fragment yield vs. fragment mass and inverse temperature.
(b) Arrhenius plots for representative charges. (c) Fragment mass yields for various values of E

�
. Solid curves are from a fit to

Fisher’s model. Error bars are smaller than the size of the points. Right: The scaled yield distribution versus the scaled temperature
for the ISiS data (upper) and d

�
3 Ising model calculation (lower). For the Ising model, the quantity

�
nA � q0A

� τ � � 10 is plotted
against the quantity Aσε � 1 � 435T . Data for T

�
Tc is scaled only as nA � q0A

� τ.



EXPERIMENTAL PROPERTIES OF THE
NUCLEAR VAPOR AND THE PHASE

DIAGRAM

The ISiS data sets

Recently, multifragmentation data from the Indiana
Silicon Sphere (ISiS) Collaboration was shown to exhibit
both reducibilityand thermal scaling [22, 23]; thus it may
be interesting to determine whether the Fisher model de-
scribes the ISiS data as well. In order to find if this is the
case, the ISiS charge yields from AGS experiment E900a
of 8 GeV/c π � Au fragmentation data (see Fig. 4a) were
fit to the following modified form of Eq. (11) which in-
corporates, in an approximate manner, the Coulomb en-
ergy release when a particle moves from the liquid to the
vapor:

nA
� q0A � τ exp

�
A∆µ � ECoul

T
� c0εAσ

T � � (14)

where ECoul is given by:

ECoul
� e2

4πε0

	 Z0 � Z  Z

r0

� 	 A0 � A  1 � 3 � A1 � 3 ��� 1 � e � xε � � (15)

Here Z0 is the charge of the fragmenting system and
r0

� 1 � 2 fm. This energy vanishes as xε at the criti-
cal point where no distinction exists between liquid and
vapor. The mass of a fragment prior to secondary de-
cay A was estimated by multiplying the measured frag-
ment charge Z by an A

�
Z ratio of 2 and by a factor of	 1 � 	 E � � B f   where E � is the reconstructed excitation

energy of the event and B f is the binding energy of the
fragment. The temperature T was determined by as-
suming a degenerate Fermi gas, thus T ��� E � � a and
a � A0

�
α; α � 8 	 1 � E � � B0  [24] with B0 as the binding

energy of the fragmenting system. This accommodates
the empirically observed change in α with excitation en-
ergy [25].

Over 500 data points for 1 � 5 � E � � 6 � 0 MeV/nucleon
and 5 � Z � 15 were simultaneously fit to Eq. (14) with
the parameters of the modified Fisher model (∆µ, x, τ,
σ, c0 and Tc) allowed to vary to minimize chi-squared
(see Fig. 4a). Fragments with Z � 5 were not consid-
ered in the fit because: (1) Fisher’s model expresses the
mass/energy of a fragment in terms of bulk and surface
energies and this approximation is known to fail for the
lightest of nuclei where structure details (shell effects)
dominate, and (2) for the lightest fragments equilibrium
and non-equilibrium production cannot always be differ-
entiated. Fragments with Z � 15 were not elementally
resolved [26], and were also excluded.

The behavior of the data for the 	 nA � A � T  surface is
reproduced over a wide range in E � and Z as shown in

both Arrhenius plots (Fig. 4b) and fragment yield dis-
tributions (Fig. 4c). The results of scaling the data ac-
cording to Eq. (14) are shown in Fig. 4. The fragment
mass yield distribution is scaled by the Fisher’s power
law pre-factor, the bulk term and the Coulomb energy:
nA

�
q0A � τ exp 	 ∆µA � ECoul

�
T  . This quantity is plotted

against the temperature scaled by Fisher’s parameteriza-
tion of the surface energy: Aσε

�
T . The scaled data col-

lapse to a single line over six orders of magnitude, pre-
cisely the behavior predicted by Fisher’s model. This
line is the liquid-vapor coexistence line, as shown below,
and provides direct evidence for the liquid to vapor phase
transition in excited nuclei. It may be worth noticing that
Fig. 4 represents the first extensive test ever for any phys-
ical system of Fisher’s formula (Eq. (11)).

The value of τ � 2 � 18
�

0 � 14 is in the range pre-
dicted by Fisher’s model and σ � 0 � 54

�
0 � 01 is close

to the value expected for a three dimensional system,� 2
�
3. The ∆µ � 0 � 06

�
0 � 03, may indicate that the sys-

tem is a slightly super-saturated vapor. The value of x
is 1 � 00

�
0 � 06. The value of c0

� 18 � 3 �
0 � 5 MeV is

close to the value of the surface energy coefficient of the
liquid-drop model: 16 � 8 MeV. The values of the crit-
ical exponents determined here are in agreement with
those determined previously from other multifragmenta-
tion data [19, 20] and the value of the excitation energy
at the critical point E �c � 3 � 8 �

0 � 3 MeV/nucleon is in
the neighborhood of the value observed in the EOS anal-
ysis (E �c 	 4 � 75 MeV/nucleon) [12, 20, 28]. The two
experiments use a different method to distinguish parti-
cles resulting from the initial projectile-target collision
from fragments formed afterwards; this difference leads
to EOSE � 	 1 � 2ISiSE � [27]. The value of EOSE �c corre-
sponds to the steepest decrease in the mass of the largest
fragment and to the maximum value of its variance in
the EOS data [20, 28]. The extracted critical temper-
ature Tc

� 6 � 7 �
0 � 2 MeV is comparable to theoretical

estimates for small nuclear systems [30, 31, 32, 33].
Using the values of the parameters determined above

for the ISiS experiment and Eq. (14), the coexistence
curve observed in the scaled fragment yields in Fig. 4
can be cast into a more familiar form. Fisher’s model
assumes that the non-ideal vapor can be approximated
by an ideal gas of clusters. Accordingly, the quantity nA
is proportional to the partial pressure of a fragment of
mass A and the total pressure due to all of the fragments
is the sum of their partial pressures: p

�
T � ∑nA. In

the actual experiment, this pressure is virtual, it is the
pressure the vapor would have to provide the back flow
needed to keep the source at equilibrium. The reduced
pressure is given by:

p
pc

� T ∑nA 	 T 
Tc ∑nA 	 Tc  � (16)

The coexistence line for finite neutral nuclear matter is
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calculated errors and the thin lines show a fit to and reflection of Guggenheim’s equation.

then obtained by using the nA 	 T � ∆µ � 0 � ECoul
� 0  from

Eq. (14) in Eq. (16). This is shown in Fig. 5. Recalling
the Clausius-Clapeyron equation: dp

�
dT � ∆H

�
T ∆V

one obtains: p
�

pc
� exp 	 ∆H

�
Tc 	 1 � Tc

�
T   which de-

scribes several fluids up to Tc [36]. Fitting the coexis-
tence line and using the above value of Tc gives ∆H �
26

�
1 MeV, the enthalpy of evaporation of a cluster from

the liquid. This value, after a correction pV � T , gives
a value for ∆E 	 22MeV. Since the gas described by
Fisher’s model is non-ideal, the average cluster is greater
in size than a monomer. The average size of a fragment
in the region of the p-T coexistence line obtained from
Eq. (14) and the experimentally determined parameters is
1 � 5. Thus the ∆E/nucleon becomes 	 15 MeV, remark-
ably close to the nuclear bulk energy coefficient.

The system’s density can be found from ρ � ∑AnA,
and the reduced density from

ρ
ρc

� ∑AnA 	 T 
∑AnA 	 Tc  � (17)

With ∆µ and ECoul set to 0 in Eq. (14), Eq. (17) yields the
low density branch of the coexistence curve of finite neu-
tral nuclear matter, shown in Fig. 5. Following Guggen-
heim it is possible to determine the high density branch
as well: empirically, the ρ

�
ρc-T

�
Tc coexistence curves

of several fluids can be fit with the function [37]:

ρl � v
ρc

� 1 � b1 	 1 � T
Tc

 �
b2 	 1 � T

Tc
 1 � 3 (18)

where the parameter b2 is positive (negative) for the
liquid ρl (vapor ρv) branch. It was later recognized that

the power of 1
�
3 was the critical exponent β. Using

Fisher’s model, β can be determined from τ and σ: β �	 τ � 2  � σ [13, 14, 15, 16]. For this work β � 0 � 33
�

0 � 25.
Using this value of β and fitting the coexistence curve
from the ISiS E900a data with Eq. (18) one obtains an
estimate of the full ρv branch of the coexistence curve
and changing the sign of b2 gives the full ρl branch of
the coexistence curve of finite neutral nuclear matter. If
normal nuclei exist at the T � 0 point of the coexistence
curve and the parameterization of the coexistence curve
in Eq. (18) is used, then the critical density is found to be
ρc
� 0 � 3ρ0.
The critical compressibility factor CF

c
� pc

�
Tcρc is

found to be 0 � 25
�

0 � 06, in agreement with the values
for several fluids [38]. Using Tc and ρc from above in
combination with CF

c gives a critical pressure of pc
�

0 � 07 MeV
�

fm3 .

The EOS data sets

The EOS Collaboration has collected data for the re-
verse kinematics reactions 1 � 0 AGeV Au � C, 1 � 0 AGeV
La � C and 1 � 0 AGeV Kr � C [28, 29]. There were� 25 � 000, � 22 � 000 and � 36 � 000 fully reconstructed
events recorded for the Au � C, La � C and Kr � C reac-
tions, respectively. The term “full reconstructed” means
that the total measured charge in each event was within
three units of the charge of the projectile.



The location of the critical point, in terms of exci-
tation energy, was determined from an examination of
measured fluctuations. This was not possible with the
ISiS data set because there was no direct measure of
the largest fragment in each event and the events were
not fully reconstructed. At the critical point the fluctu-
ations are maximal. However, while the maximum in
the fluctuations will occur at the critical point, the pres-
ence of a peak in the fluctuations is a necessary, but not
sufficient, condition for a existence of a phase transition
[20]. Table 1 lists the results. For this analysis the val-
ues determined for the excitation energy at the critical
point for the Au � C reaction are in proximity of other
values observed in previous EOS analyses (E �c 	 4 � 75
MeV/nucleon) [20, 12, 28, 29]. Estimates of the critical
temperature Tc are made by using the values of E �c via the
degenerate Fermi gas relation as above and led to values,
shown in Table 1, that are comparable to theoretical esti-
mates for small nuclear systems [30, 31, 32, 33].

Figure 6 shows the fragment mass yield distribution
scaled by the power law pre-factor, the chemical poten-
tial and Coulomb terms: nA

�
q0A � τ exp 	 ∆µA � ECoul

�
T 

plotted against the inverse temperature scaled by Fisher’s
parameterization of the surface energy: Aσε

�
T . Now,

the scaled data for all three systems collapse onto a sin-
gle line over several orders of magnitude as predicted by
Fisher’s droplet formalism [13]. This collapse provides
direct evidence for a liquid to vapor phase transition in
excited nuclei. Furthermore, the fact that the data from
each system show a common scaling illustrates the com-
mon nature of the underlying phenomenon.

The values of τ � 2 � 2 �
0 � 1, σ � 0 � 71

�
0 � 02 and

c0
� 14 � 0 �

1 � 0 MeV determined in this analysis are are
in agreement with those determined for the ISiS gold
multifragmentation data sets [17] and are in agreement
with values previously determined for the EOS Au � C
data set [18, 34, 35, 20, 12]. The value of the surface
energy coefficient c0 is close to the value of the surface
energy coefficient of the liquid-drop model which is 16 � 8MeV.

The values of ∆µ reported in Table 2 should be com-
pared to the values returned when the EOS fragment
yields were fit to (Eq. 11):

�
∆µ � 	 3 � 0 AMeV for all

EOS reactions. The reduction in the magnitude of the
∆µ values is about a factor of six and is due to the mod-
ification of Eq. (11) to account for the Coulomb en-
ergy, i.e. Eq. (14). The remaining small positive ∆µ val-
ues of the systems may indicate that those systems are
slightly super-saturated, or more probably they may re-
flect some other energy costs not taken into account (e.g.
the symmetry energy or pairing), or they may reflect that
the approximation for the cost in Coulomb energy to
form a fragment given in Eq. (15) is not completely ade-
quate (for instance Eq. (15) assumes a spherical geome-
try which may or may not be the case) or the may merely

reflect noise in the data.
The values of x for each system may indicate more

(Au and La) or less (Kr) Coulomb energy present in the
system. They may also reflect the symmetry of the col-
lision which may affect the geometry of the remnant,
e.g. a very asymmetric collisions like Au � C may leave a
nearly spherical remnant, while a more symmetric colli-
sion like Kr � C may result in a less spherical fragmenting
system.

The values of y returned indicate that the fragments
have the same mass to charge ratio as the excited rem-
nant.

The difference in values of ∆µ, x and y determined in
the analysis of the three EOS data sets and those deter-
mined in the analysis of the ISiS 8 � 0 GeV

�
c π on gold

multifragmentationset [17] is also an open question. The
differences in E �c and Tc are due to the differences in re-
constructed excitation energy scales [27]. This differ-
ence carries over to all energy related quantities, e.g. c0 .

The p-T coexistence curve can be determined from
this analysis. As seen above, Fisher’s theory assumes
that the non-ideal fluid can be approximated by an ideal
gas of droplets. Accordingly, the quantity nA is propor-
tional to the partial pressure of a fragment of mass A
and the total pressure due to all of the fragments is the
sum of their partial pressures. The reduced pressure is
then given by Eq. (16). The coexistence curve for fi-
nite neutral nuclear matter is obtained by substituting the
nA 	 T � ∆µ � 0 � ECoul

� 0  from Eq. (14) in the numerator
of Eq. (16) and nA 	 Tc � ∆µ � 0 � ECoul

� 0  in the denom-
inator. This allows one to transform the information in
Fig. 6 into the familiar phase diagram in Fig. 7. The data
points shown give the values of p

�
pc and Tc

�
T calcu-

lated via Eq. (16) for the bins in E � up to and including
the critical point.

Figure 7 gives an estimate of the coexistence line of
finite nuclear matter and from this it is possible to make
an estimate of the bulk binding energy of nuclear matter
and the ∆E

�
A 	 14 AMeV, close to the nuclear bulk

energy coefficient of 15 � 5 MeV.
The reduced density is given by Eq. (17). With ∆µ

and ECoul set to 0 in the numerator of Eq. (14) and ∆µ
and ECoul set to 0 with T set to Tc in the denominator,
Eq. (17) gives the low density branch of the coexistence
curve of finite nuclear matter, shown in Fig. 7.

Following Guggenheim’s work with simple fluids it
is possible to determine the high density branch as well
via Eq. (18). For the EOS data β � 0 � 3 �

0 � 1. Using
this value of β and fitting the coexistence curve from
the EOS data sets with Eq. (18) one obtains estimates
of the ρv branch of the coexistence curve and changing
the sign of b2 gives the ρl branch, thus yielding the full
T -ρ coexistence curve of finite nuclear matter.

From Fig. 7 it is possible to make an estimate of the
density at the critical point ρc. Assuming that normal



TABLE 1. Critical points of excited nuclei
System E

�
c (AMeV) Tc (MeV) ρc (ρ0) pc (MeV � fm3)

Au
�

C 4 � 6 � 0 � 2 7 � 6 � 0 � 2 0 � 39 � 0 � 01 0 � 11 � 0 � 04
La

�
C 4 � 9 � 0 � 2 7 � 8 � 0 � 2 0 � 39 � 0 � 01 0 � 12 � 0 � 04

Kr
�

C 5 � 1 � 0 � 2 8 � 1 � 0 � 2 0 � 39 � 0 � 01 0 � 12 � 0 � 04
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FIGURE 6. The scaled yield distribution versus the scaled temperature for the gold, lanthanum and krypton systems. The solid
line has a slope of c0.

Au + C

La + C

Kr + C

Tc/T ÿ

p/
p c

Critical point

Liquid

Vapor

10
-5

10
-4

10
-3

10
-2

10
-1

1

1 2 3 4 5

Au + C

La + C

Kr + C

ρ/ρc

T
/T

c

Critical point

N
orm

al nuclei

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

FIGURE 7. EOS data results. Left: The reduced pressure-temperature phase diagram: the points show calculations performed
at the excitation energies below the critical point and the lines show fits to the Clausius-Clapeyron equation. Right: The points are
calculations performed at the excitation energies below the critical point and the lines are a fit to and reflection of Guggenheim’s
equation.



TABLE 2. Uncommon fit parameters
System ∆µ (AMeV) x y

Au
�

C 0 � 38 � 0 � 02 1 � 1 � 0 � 2 0 � 5 � 0 � 1
La

�
C 0 � 47 � 0 � 03 1 � 2 � 0 � 1 0 � 3 � 0 � 2

Kr
�

C 0 � 58 � 0 � 08 4 � 0 � 1 � 0 0 � 8 � 0 � 2

nuclei exist at the T � 0 point of the ρl branch of the
coexistence curve, then using the parameterization of
the coexistence curve in Eq. (18) gives ρc

� ρ0
�
3. See

Table 1 for precise values.
The critical compressibility factor CF

c
� pc

�
Tcρc can

also be determined in a straightforwardmanner from [38]
via CF

c
� pc

�
Tcρc and Table 3 shows the results for the

EOS data sets which are in agreement with the values for
several fluids [15] and that of the ISiS data [17].

Finally, a measure of the pressure at the critical point
pc can be made by using Tc and ρc from above in combi-
nation with CF

c . The results are shown in Table 1. This
last calculation gives a complete experimental measure
of the location of the critical point of finite nuclear matter
(pc � Tc � ρc) and is in agreement with the ISiS results and
in rough agreement with theoretical calculations [30, 33].

FINITE SIZE EFFECTS AND THE
EXTRAPOLATION TO INFINITE

NUCLEAR MATTER

The coexistence line and phase diagram obtained above
refer to well specified nuclei, which are finite systems.
Our goal, in this section, is to extrapolate these results to
infinite nuclear matter.

Finite size effects are paramount in nuclei. For in-
stance, the binding energy per nucleon decreases from
the � 15 � 5 AMeV calculated for nuclear matter to about
8 AMeV for typical nuclei. This lowering of the binding
energy is understood as due to the surface (and Coulomb)
energy.

We can expect that such a drastic reduction affects the
critical temperature as well. The Ising model can be
used again as a simple testing ground. Like in nuclei,
we have a volume energy: if a finite system is considered
(no periodic boundary conditions) a surface is generated
with the attendant surface energy. This allows us to write
a “liquid drop” formula for the Ising model:

E � aV A � aSA2 � 3 � (19)

In most fluids for which a liquid drop expansion is appli-
cable the volume coefficient aV is approximately equal
and opposite to the surface coefficient aS: aV 	 � aS .
This is true for nuclei and it is expected for the Ising
model.

We now determine the critical temperature for vari-
ous sizes (lattices) and check its dependence on the lat-
tice size. Figure 8 shows a remarkable decrease of Tc
with decreasing lattice size which we are now trying to
understand. The infinite Ising model contains a single
parameter that determines the energy scale and thus the
binding energy per site. We now naively guess that, for
a finite system also all the quantities are expressed in en-
ergy scale with the binding energy per site, but corrected
for the surface energy. We can write

T A0
c

T ∞
c

� aV A0 � aSA2 � 3
0

aV A0

� 1 � 1

A1 � 3
0

� 1 � 1
L

(20)

where A0 is the number of sites in the lattice and L is
the linear lattice side. This naive version of the finite
size scaling of the critical temperature has been discussed
long ago [39] and more sophisticated versions have been
theorized [39] and observed such as [40, 5]

T A0
c

T ∞
c

∝ 1 � L � 1 � ν (21)

where ν is the critical exponent describing the divergence
of the correlation length near the critical point. For the
three-dimensional Ising lattice ν 	 0 � 63. For the pur-
poses at hand, the naive finite size scaling is sufficient
and the sophisticated version produces essentially equiv-
alent results shown in Figure 8.

The result of this exercise is to show that the critical
temperature of infinite nuclear matter should be approx-
imately equal to that determined above for finite nuclei
time the ratio of the binding energy of infinite nuclear
matter to the binding energy of the finite nucleus. In fact,
we can do better than that. In each of the three EOS re-
actions, remnants of different sizes (and thus of different
critical temperatures) are characterized. In this way a
good range of A0 values is accessible. Now we can try
to fit the entire universe of EOS data as done above, but
using the scaling give by Eq. (20).

We do this be performing the Fisher scaling fit as
above, but in ε in Eq. (14) use Tc 	 A0  from Eq. (20) and
Tc 	 ∞  left as a fit parameter. The preliminary results are
shown in Fig. 9 when this is done for both the EOS and
ISiS data sets individually. The fit parameters are almost
the same as in the previous analysis and are shown in Ta-
ble 4. The extracted values for the critical temperature
of infinite nuclear matter are � 13 � 6 MeV from the ISiS
data and � 12 � 9 MeV from the EOS data. These val-
ues agree well with various theoretical estimates of the
critical temperature of bulk nuclear matter.

The distribution of Tc 	 A0  is shown in Fig. 10. The
value of Tc 	 A0  resembles the nuclear binding energy
curve because for a nucleus Eq. (20) becomes

T A0
c

T ∞
c

� B 	 A0 � Z0 
B 	 ∞ � 0  (22)



TABLE 3. Thermodynamic properties of excited nuclei
System ∆H (MeV)

�
T � (MeV) ∆E � A (AMeV) CF

c

Au
�

C 19 � 4 � 0 � 7 4 � 6 � 0 � 6 14 � 1 0 � 28 � 0 � 09
La

�
C 19 � 6 � 0 � 7 4 � 9 � 0 � 6 14 � 1 0 � 28 � 0 � 09

Kr
�

C 19 � 5 � 1 � 7 4 � 9 � 0 � 6 14 � 1 0 � 28 � 0 � 09

FIGURE 8. Finite size scaling of the critical temperature of the three-dimensional Ising model. Left: the naive estimate of finite
size scaling. Right: the sophisticated estimate of finite size scaling. The data points and fits on the top of both figures show the
results for lattices with periodic boundary conditions (p.b.c.) which more closely represent an infinite system. The datapoints and
fits on the bottome of both figures show the results for lattices with open boundary condistion (no p.b.c.) and more closely represent
the case of finite systems like nuclei.

TABLE 4. Uncommon fit parameters
System ∆µ (AMeV) x y σ τ c0 (MeV)

ISiS π �
Au � 0 � 1 � 1 � 1 1 � 0 (fixed) � 0 � 6 � 2 � 2 � 18 � 1

EOS Au
�

C � 0 � 2 � 1 � 0 � 0 � 7 � 0 � 6 2 � 2 (fixed) � 16 � 6
EOS La

�
C � 0 � 2 � 1 � 2 � 0 � 4 � 0 � 6 2 � 2 (fixed) � 16 � 6

EOS Kr
�

C � 0 � 5 � 3 � 0 � 0 � 8 � 0 � 6 2 � 2 (fixed) � 16 � 6
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FIGURE 9. Fisher scaling and finite size scaling analysis of the ISiS and EOS data sets.
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FIGURE 10. Variation of the critical temperature with nu-
cleon number for the EOS and ISiS fragmenting remnants.

the ratio of the binding energy of a given nucleus of mass
A0 and charge Z0 to the bulk binding energy.

COMPOUND NUCLEUS DECAY AND
THE LIQUID TO VAPOR PHASE

TRANSITION

The construction of a phase diagram, and in particular
of a pressure-temperature diagram for a nuclear system
leads us to the inevitable question: What is the mean-
ing of pressure when the nuclear system is facing vac-
uum? This question has presented itself in many equiv-
alent guises in the literature and in endless discussions.
It amounts to asking: a) whether there is a gas phase in
equilibrium with a liquid for the reactions in question;
and b) whether this gas phase is thermodynamically char-
acterizable.

The answer is no to a) and yes to b). And this is not
contradictory. Consider the interface between a liquid
and saturated vapor. From the liquid side we can spec-
ify with standard theories (e.g. compound nucleus decay
rate, the equation for electrons emitted from a hot fila-
ment, etc.) the emission flux of particles from the sur-
face. See Fig. 11. From the vapor side, we can write
down the return flux into the liquid knowing the tem-
perature, pressure/concentration and composition of the
vapor. At equilibrium, by definition, the vapor to liquid
flux matches physically and chemically the liquid to va-
por flux. Thus, the saturated vapor acts, so to speak, as a
mirror reflecting back elastically all the particles emitted
by the liquid. This is the only role of the vapor.

If we remove the vapor, the liquid continues emitting
particles as if the vapor were still present. Thus, the sat-



FIGURE 11. Emission of nuclear droplets from a compound nucleus.

urated vapor is completely characterized by the flux from
the liquid side, even if the vapor itself is not physically
there. So it is that we can unequivocally speak of the
phase transition for a glass of water (or a nucleus) evap-
orating in a dry atmosphere or equivalently in vacuum.

In this light, compound nuclear decay becomes sud-
denly relevant to the liquid to vapor phase transition.
In the past, we have studied the evaporation of com-
plex fragments from well characterized compound nuclei
[41]. It should be possible to cast these results in terms of
Fisher’s scaling. This is done in Fig. 12 for the reaction
of Ni � C. As in the previous cases, the scaling is very
good and the extracted parameters very close to those of
the other systems. From this example we see in these
low energy reactions a very interesting source for further
characterization of the phase transition, in particular for
anchoring the parameters of Fisher’s model to the well
established T � 0 parameters of the liquid drop model.

In conclusion, the ISiS and EOS data, together with
the low energy compound nucleus reaction contain the
signature of a liquid to vapor phase transition via their
strict adherence to Fisher’s model. Through Fisher’s
scaling of the fragment yield distribution (Fig. 4), the
two-phase coexistence line has been determined over
a large energy/temperature interval extending up to the
critical point. Fisher’s formula (Eq. (11)) has been exten-
sively tested and verified for the first time for any phys-

ical system. The critical exponents τ and σ as well as
the critical temperature Tc, the surface energy coefficient
c0, the enthalpy of evaporation ∆H and the critical com-
pressibility factor CF

c have been extracted and found to
agree with accepted values. Finally, pc and ρc have also
been determined, giving the first complete experimental
determination of the critical point and the full phase dia-
gram of finite neutral nuclear matter.
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